Recurrent Neural Identification and an I-Term Direct Adaptive Control of Nonlinear Oscillatory Plant

نویسندگان

  • Ieroham S. Baruch
  • Sergio M. Hernandez
  • Jacob Moreno-Cruz
  • Elena Gortcheva
چکیده

A new Modular Recurrent Trainable Neural Network (MRTNN) has been used for system identification of two-mass-resort-damper nonlinear oscillatory plant. The first MRTNN module identified the exponential part of the unknown plant and the second one the oscillatory part of the plant. The plant has been controlled by a direct adaptive neural control system with integral term. The RTNN controller used the estimated parameters and states to suppress the plant oscillations and the static plant output control error is reduced by an I-term added to the control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The based on optimization LM learning techniques is used for nonlinear oscillatory plant identification and oscillation suppression by means of a direct integral term (I-term) adaptive neural control using RCVNN. Lastly,

In this work, a recursive Levenberg-Marquardt (LM) learning algorithm in the complex domain is developed and applied to the learning of an adaptive control scheme composed by ComplexValued Recurrent Neural Networks (CVRNN). We simplified the derivation of the LM learning algorithm using a diagrammatic method to derive the adjoint CVRNN used to obtain the gradient terms. Furthermore, we apply th...

متن کامل

An Adaptive Sliding Mode Control with I-term Using Recurrent Neural Identifier

The paper proposed a new adaptive control system containing a Recurrent Neural Network (RNN) identifier, a Sliding Mode Controller (SMC), and an I-term controller. The SMC is derived defining the sliding surface with respect to the output tracking error and using a nonlinear plant identification, and state estimation RNN, which gives all the necessary state and parameter information to resolve ...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012